
Requirements and assumptions
Model

Implementation
Robustness handling

Akka FileSharing

Francesco Paolo Culcasi
Alessandro Martinelli

Nicola Messina

M. Sc. in Computer Engineering
Concurrent and Distributed Systems

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

System overview

Definition: this software let a certain number of nodes to
collaborate (forming a cluster ) for reading and writing a group of
files distributed among the nodes partecipating to the cluster.
Space: every node dedicates a certain amount of space to the
application.
Adding a file: each user can add a file to the cluster either
importing it from his local hard disk or by creating a new one.
Owner of a file: a file added to the cluster doesn’t belong
indefinitely to someone; instead, at a given instant it belong to
the node who own it in that moment.
Search of a file: the search of a file is a tag-based search, so a
certain number of tags must be associated to each file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

System overview

Definition: this software let a certain number of nodes to
collaborate (forming a cluster ) for reading and writing a group of
files distributed among the nodes partecipating to the cluster.
Space: every node dedicates a certain amount of space to the
application.
Adding a file: each user can add a file to the cluster either
importing it from his local hard disk or by creating a new one.
Owner of a file: a file added to the cluster doesn’t belong
indefinitely to someone; instead, at a given instant it belong to
the node who own it in that moment.
Search of a file: the search of a file is a tag-based search, so a
certain number of tags must be associated to each file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

System overview

Definition: this software let a certain number of nodes to
collaborate (forming a cluster ) for reading and writing a group of
files distributed among the nodes partecipating to the cluster.
Space: every node dedicates a certain amount of space to the
application.
Adding a file: each user can add a file to the cluster either
importing it from his local hard disk or by creating a new one.
Owner of a file: a file added to the cluster doesn’t belong
indefinitely to someone; instead, at a given instant it belong to
the node who own it in that moment.
Search of a file: the search of a file is a tag-based search, so a
certain number of tags must be associated to each file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

System overview

Definition: this software let a certain number of nodes to
collaborate (forming a cluster ) for reading and writing a group of
files distributed among the nodes partecipating to the cluster.
Space: every node dedicates a certain amount of space to the
application.
Adding a file: each user can add a file to the cluster either
importing it from his local hard disk or by creating a new one.
Owner of a file: a file added to the cluster doesn’t belong
indefinitely to someone; instead, at a given instant it belong to
the node who own it in that moment.
Search of a file: the search of a file is a tag-based search, so a
certain number of tags must be associated to each file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

System overview

Definition: this software let a certain number of nodes to
collaborate (forming a cluster ) for reading and writing a group of
files distributed among the nodes partecipating to the cluster.
Space: every node dedicates a certain amount of space to the
application.
Adding a file: each user can add a file to the cluster either
importing it from his local hard disk or by creating a new one.
Owner of a file: a file added to the cluster doesn’t belong
indefinitely to someone; instead, at a given instant it belong to
the node who own it in that moment.
Search of a file: the search of a file is a tag-based search, so a
certain number of tags must be associated to each file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Requirements

Fully decentralized system: no centralized, high-performance
entity storing all the files or performing special tasks should be
used.
Concurrent file access: concurrent file access is handled in a
Single Writer Multiple Reader way: in a given moment,
whathever number of peer can read a certain file. Instead, if a
peer is writing a file, no one else is allowed to reading or
modifying the same file.
Fault handling: the system should remain in a consistent state
even if the following problems arise:

network failure
peer failure

Relaxed load balancing: files are homogeneously distributed
between the partecipating peers. However, it is not required that
in every instant the load is distributed in the most fair way
possible, instead this may be considered a general guideline.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Requirements

Fully decentralized system: no centralized, high-performance
entity storing all the files or performing special tasks should be
used.
Concurrent file access: concurrent file access is handled in a
Single Writer Multiple Reader way: in a given moment,
whathever number of peer can read a certain file. Instead, if a
peer is writing a file, no one else is allowed to reading or
modifying the same file.
Fault handling: the system should remain in a consistent state
even if the following problems arise:

network failure
peer failure

Relaxed load balancing: files are homogeneously distributed
between the partecipating peers. However, it is not required that
in every instant the load is distributed in the most fair way
possible, instead this may be considered a general guideline.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Requirements

Fully decentralized system: no centralized, high-performance
entity storing all the files or performing special tasks should be
used.
Concurrent file access: concurrent file access is handled in a
Single Writer Multiple Reader way: in a given moment,
whathever number of peer can read a certain file. Instead, if a
peer is writing a file, no one else is allowed to reading or
modifying the same file.
Fault handling: the system should remain in a consistent state
even if the following problems arise:

network failure
peer failure

Relaxed load balancing: files are homogeneously distributed
between the partecipating peers. However, it is not required that
in every instant the load is distributed in the most fair way
possible, instead this may be considered a general guideline.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Requirements

Fully decentralized system: no centralized, high-performance
entity storing all the files or performing special tasks should be
used.
Concurrent file access: concurrent file access is handled in a
Single Writer Multiple Reader way: in a given moment,
whathever number of peer can read a certain file. Instead, if a
peer is writing a file, no one else is allowed to reading or
modifying the same file.
Fault handling: the system should remain in a consistent state
even if the following problems arise:

network failure
peer failure

Relaxed load balancing: files are homogeneously distributed
between the partecipating peers. However, it is not required that
in every instant the load is distributed in the most fair way
possible, instead this may be considered a general guideline.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Assumptions

File editing: in order for a peer to modifying a file, the file must
be located in the peer’s local space.
An user may modify up to one file at a time.
At the end of the modification, a load balancing algorithm is
executed for deciding where to put the file (in which node).
File reading: files to read are stored in the temp folder, so they
don’t fill the application’s available space.
Leave of a node: when a node leaves voluntarily, both files and
informations located in his local space must remain reachable: a
load balancing algorithm and an information redistribution
algorithm will be executed.
File name: the name of a file must be unique within the entire
cluster. A file name is considered the same way as a tag.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Assumptions

File editing: in order for a peer to modifying a file, the file must
be located in the peer’s local space.
An user may modify up to one file at a time.
At the end of the modification, a load balancing algorithm is
executed for deciding where to put the file (in which node).
File reading: files to read are stored in the temp folder, so they
don’t fill the application’s available space.
Leave of a node: when a node leaves voluntarily, both files and
informations located in his local space must remain reachable: a
load balancing algorithm and an information redistribution
algorithm will be executed.
File name: the name of a file must be unique within the entire
cluster. A file name is considered the same way as a tag.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Assumptions

File editing: in order for a peer to modifying a file, the file must
be located in the peer’s local space.
An user may modify up to one file at a time.
At the end of the modification, a load balancing algorithm is
executed for deciding where to put the file (in which node).
File reading: files to read are stored in the temp folder, so they
don’t fill the application’s available space.
Leave of a node: when a node leaves voluntarily, both files and
informations located in his local space must remain reachable: a
load balancing algorithm and an information redistribution
algorithm will be executed.
File name: the name of a file must be unique within the entire
cluster. A file name is considered the same way as a tag.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

What the software must do
Requirements
Assumptions

Assumptions

File editing: in order for a peer to modifying a file, the file must
be located in the peer’s local space.
An user may modify up to one file at a time.
At the end of the modification, a load balancing algorithm is
executed for deciding where to put the file (in which node).
File reading: files to read are stored in the temp folder, so they
don’t fill the application’s available space.
Leave of a node: when a node leaves voluntarily, both files and
informations located in his local space must remain reachable: a
load balancing algorithm and an information redistribution
algorithm will be executed.
File name: the name of a file must be unique within the entire
cluster. A file name is considered the same way as a tag.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Locating files

Files are distributed among cluster’s nodes, with the policy "a file
who has to be added to the system goes to the node with higher
free space".
Since files have not a fixed residing node we need informations
to locate them.
Using Hash tables let us obtain a quicker lookup and insertion of
the information about the owner of a file (constant-time).
We need a key-value association through hash function (or
something similar, i.e. id key="file name/tag" value="node
responsible for the information").
We don’t want the whole hash table to reside in a single node.
=⇒ Distributed Hash Table
Files are spread across multiple nodes, with each node taking
responsibility for a portion of the key-space.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Locating files

Files are distributed among cluster’s nodes, with the policy "a file
who has to be added to the system goes to the node with higher
free space".
Since files have not a fixed residing node we need informations
to locate them.
Using Hash tables let us obtain a quicker lookup and insertion of
the information about the owner of a file (constant-time).
We need a key-value association through hash function (or
something similar, i.e. id key="file name/tag" value="node
responsible for the information").
We don’t want the whole hash table to reside in a single node.
=⇒ Distributed Hash Table
Files are spread across multiple nodes, with each node taking
responsibility for a portion of the key-space.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Locating files

Files are distributed among cluster’s nodes, with the policy "a file
who has to be added to the system goes to the node with higher
free space".
Since files have not a fixed residing node we need informations
to locate them.
Using Hash tables let us obtain a quicker lookup and insertion of
the information about the owner of a file (constant-time).
We need a key-value association through hash function (or
something similar, i.e. id key="file name/tag" value="node
responsible for the information").
We don’t want the whole hash table to reside in a single node.
=⇒ Distributed Hash Table
Files are spread across multiple nodes, with each node taking
responsibility for a portion of the key-space.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Locating files

Files are distributed among cluster’s nodes, with the policy "a file
who has to be added to the system goes to the node with higher
free space".
Since files have not a fixed residing node we need informations
to locate them.
Using Hash tables let us obtain a quicker lookup and insertion of
the information about the owner of a file (constant-time).
We need a key-value association through hash function (or
something similar, i.e. id key="file name/tag" value="node
responsible for the information").
We don’t want the whole hash table to reside in a single node.
=⇒ Distributed Hash Table
Files are spread across multiple nodes, with each node taking
responsibility for a portion of the key-space.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

The Chord Protocol

Problems
How to figure out which node is responsible for a file?
How to handle changes to the network topology? (Nodes can
join or leave the cluster)

Solution
The Chord Protocol

Chord1 is a protocol and a set of algorithms for implementing a
distributed hash table.
Does not prescribe replication techniques.
Redistribution of data associated with key when nodes leave or
join the network it’s up to the application.

1Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing

https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf


Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

The Chord Protocol

Problems
How to figure out which node is responsible for a file?
How to handle changes to the network topology? (Nodes can
join or leave the cluster)

Solution
The Chord Protocol

Chord1 is a protocol and a set of algorithms for implementing a
distributed hash table.
Does not prescribe replication techniques.
Redistribution of data associated with key when nodes leave or
join the network it’s up to the application.

1Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing

https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf


Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Chord in action 1/3

The key-space can be visualized
as a ring.
A function f()(we’ll see later) is
used to map keys onto location on
the ring.
Nodes are also mapped to
locations on the ring (determined
by applying f() that maps their IP
address and port number to
unique IDs).

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Chord in action 2/3

Consistent Hashing scheme:
Chord assigns responsibility for
segments of the ring to individual
nodes.
It allows them to be added or
removed from the cluster while
minimizing the number of key that
will need to be reassigned.
Given a file and the
corresponding key (obtained
applying f() to one of its tags) the
node responsible for the
information "which node owns the
file" is the one whose location on
the ring is equal or greater than
the key.

file: "foo.txt"
owner: node14
tags: "foo.txt", "foo", "bar", ...
f("foo") returns 5
f(131.112.193.73:2556) returns 8
⇓
node8 is responsible for tag "foo"

node8 says «"foo.txt" is in node14»

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Chord in action 2/3

Consistent Hashing scheme:
Chord assigns responsibility for
segments of the ring to individual
nodes.
It allows them to be added or
removed from the cluster while
minimizing the number of key that
will need to be reassigned.
Given a file and the
corresponding key (obtained
applying f() to one of its tags) the
node responsible for the
information "which node owns the
file" is the one whose location on
the ring is equal or greater than
the key.

file: "foo.txt"
owner: node14
tags: "foo.txt", "foo", "bar", ...
f("foo") returns 5
f(131.112.193.73:2556) returns 8
⇓
node8 is responsible for tag "foo"

node8 says «"foo.txt" is in node14»

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Chord in action 2/3

Consistent Hashing scheme:
Chord assigns responsibility for
segments of the ring to individual
nodes.
It allows them to be added or
removed from the cluster while
minimizing the number of key that
will need to be reassigned.
Given a file and the
corresponding key (obtained
applying f() to one of its tags) the
node responsible for the
information "which node owns the
file" is the one whose location on
the ring is equal or greater than
the key.

file: "foo.txt"
owner: node14
tags: "foo.txt", "foo", "bar", ...
f("foo") returns 5
f(131.112.193.73:2556) returns 8
⇓
node8 is responsible for tag "foo"

node8 says «"foo.txt" is in node14»

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Chord in action 3/3

Present nodes are the blue circles

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Chord in action 3/3

Node 6 has been added to the network

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Hash collisions problem

Could be Hash function a good f() function?
Problem: hash functions generate collisions
How to identify uniquely a node? Using a block
cipher (e.g. AES) with fixed key and IV.

Uniform distribution of IDs.
Bijective.

AES translates IP + port (6 bytes) in fixed
length 16 bytes block =⇒ IDs are 16 bytes
wide.
We use AES also for the tags even if it’s not
strictly necessary since tag collisions are
handled properly by means of the
FileInfoTable.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Hash collisions problem

Could be Hash function a good f() function?
Problem: hash functions generate collisions
How to identify uniquely a node? Using a block
cipher (e.g. AES) with fixed key and IV.

Uniform distribution of IDs.
Bijective.

AES translates IP + port (6 bytes) in fixed
length 16 bytes block =⇒ IDs are 16 bytes
wide.
We use AES also for the tags even if it’s not
strictly necessary since tag collisions are
handled properly by means of the
FileInfoTable.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Hash collisions problem

Could be Hash function a good f() function?
Problem: hash functions generate collisions
How to identify uniquely a node? Using a block
cipher (e.g. AES) with fixed key and IV.

Uniform distribution of IDs.
Bijective.

AES translates IP + port (6 bytes) in fixed
length 16 bytes block =⇒ IDs are 16 bytes
wide.
We use AES also for the tags even if it’s not
strictly necessary since tag collisions are
handled properly by means of the
FileInfoTable.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Hash collisions problem

Could be Hash function a good f() function?
Problem: hash functions generate collisions
How to identify uniquely a node? Using a block
cipher (e.g. AES) with fixed key and IV.

Uniform distribution of IDs.
Bijective.

AES translates IP + port (6 bytes) in fixed
length 16 bytes block =⇒ IDs are 16 bytes
wide.
We use AES also for the tags even if it’s not
strictly necessary since tag collisions are
handled properly by means of the
FileInfoTable.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Akka Actors

Each node is composed by the following actors:

ClusterListener To interface the node with the cluster. It sto-
res DHT infos which are under responsibility
of the corresponding node, according to the
chord protocol.

ServerActor To manage the list of the files residing on the
node and state informations guaranteeing da-
ta consistency. It also manages file requests
through TCP connections.

FileTransferActor To issue file requests and to answer requests.
SoulReaper To monitor the other actors and to supervise

the correct closing procedure of the system.
GUIActor To handle GUI events and updates in an

asynchronous way. GUIActor runs on JavaFX
thread.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Akka Actors

Each node is composed by the following actors:

ClusterListener To interface the node with the cluster. It sto-
res DHT infos which are under responsibility
of the corresponding node, according to the
chord protocol.

ServerActor To manage the list of the files residing on the
node and state informations guaranteeing da-
ta consistency. It also manages file requests
through TCP connections.

FileTransferActor To issue file requests and to answer requests.
SoulReaper To monitor the other actors and to supervise

the correct closing procedure of the system.
GUIActor To handle GUI events and updates in an

asynchronous way. GUIActor runs on JavaFX
thread.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Akka Actors

Each node is composed by the following actors:

ClusterListener To interface the node with the cluster. It sto-
res DHT infos which are under responsibility
of the corresponding node, according to the
chord protocol.

ServerActor To manage the list of the files residing on the
node and state informations guaranteeing da-
ta consistency. It also manages file requests
through TCP connections.

FileTransferActor To issue file requests and to answer requests.
SoulReaper To monitor the other actors and to supervise

the correct closing procedure of the system.
GUIActor To handle GUI events and updates in an

asynchronous way. GUIActor runs on JavaFX
thread.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Akka Actors

Each node is composed by the following actors:

ClusterListener To interface the node with the cluster. It sto-
res DHT infos which are under responsibility
of the corresponding node, according to the
chord protocol.

ServerActor To manage the list of the files residing on the
node and state informations guaranteeing da-
ta consistency. It also manages file requests
through TCP connections.

FileTransferActor To issue file requests and to answer requests.
SoulReaper To monitor the other actors and to supervise

the correct closing procedure of the system.
GUIActor To handle GUI events and updates in an

asynchronous way. GUIActor runs on JavaFX
thread.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Working principles
Actor scheme

Akka Actors

Each node is composed by the following actors:

ClusterListener To interface the node with the cluster. It sto-
res DHT infos which are under responsibility
of the corresponding node, according to the
chord protocol.

ServerActor To manage the list of the files residing on the
node and state informations guaranteeing da-
ta consistency. It also manages file requests
through TCP connections.

FileTransferActor To issue file requests and to answer requests.
SoulReaper To monitor the other actors and to supervise

the correct closing procedure of the system.
GUIActor To handle GUI events and updates in an

asynchronous way. GUIActor runs on JavaFX
thread.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Cluster System

Use of , an open-source actor-based toolkit.
Use of Akka Cluster, that provides (as far as we are concerned):

Decentralized P2P gossip-based cluster membership.
Automatic fail-over upon node crash: the cluster sees that node as

Member unreachable the first time it is impossible to contact him and
Member removed after 10 seconds since it was marked as
unreachable.

A leaving member is seen by the cluster as:
Member leaving as soon as the cluster.leave() method has
been invoked.
Member removed immediately after it was marked as member
leaving.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Cluster System

Use of , an open-source actor-based toolkit.
Use of Akka Cluster, that provides (as far as we are concerned):

Decentralized P2P gossip-based cluster membership.
Automatic fail-over upon node crash: the cluster sees that node as

Member unreachable the first time it is impossible to contact him and
Member removed after 10 seconds since it was marked as
unreachable.

A leaving member is seen by the cluster as:
Member leaving as soon as the cluster.leave() method has
been invoked.
Member removed immediately after it was marked as member
leaving.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Cluster System

Use of , an open-source actor-based toolkit.
Use of Akka Cluster, that provides (as far as we are concerned):

Decentralized P2P gossip-based cluster membership.
Automatic fail-over upon node crash: the cluster sees that node as

Member unreachable the first time it is impossible to contact him and
Member removed after 10 seconds since it was marked as
unreachable.

A leaving member is seen by the cluster as:
Member leaving as soon as the cluster.leave() method has
been invoked.
Member removed immediately after it was marked as member
leaving.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Cluster System

Use of , an open-source actor-based toolkit.
Use of Akka Cluster, that provides (as far as we are concerned):

Decentralized P2P gossip-based cluster membership.
Automatic fail-over upon node crash: the cluster sees that node as

Member unreachable the first time it is impossible to contact him and
Member removed after 10 seconds since it was marked as
unreachable.

A leaving member is seen by the cluster as:
Member leaving as soon as the cluster.leave() method has
been invoked.
Member removed immediately after it was marked as member
leaving.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Cluster System

Use of , an open-source actor-based toolkit.
Use of Akka Cluster, that provides (as far as we are concerned):

Decentralized P2P gossip-based cluster membership.
Automatic fail-over upon node crash: the cluster sees that node as

Member unreachable the first time it is impossible to contact him and
Member removed after 10 seconds since it was marked as
unreachable.

A leaving member is seen by the cluster as:
Member leaving as soon as the cluster.leave() method has
been invoked.
Member removed immediately after it was marked as member
leaving.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Transfer overview

A FileTransferActor (FTA) is instantiated to handle a transfer
instance.
The FTA activity is transparent to the user (during normal load
balancing operation), unless the user itself asked explicitly for a
transfer (read/modify event).
FTA orthogonal behaviors:

Responder: works as server that listen for incoming transfer
requests.
Asker: works as client that initiate the transfer protocol.

Asker Responder
Sender "I want send you a file" "Sure! I’ll send you a file"

Receiver "Can you send me that file?" "I’m ready to receive the file"

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Transfer overview

A FileTransferActor (FTA) is instantiated to handle a transfer
instance.
The FTA activity is transparent to the user (during normal load
balancing operation), unless the user itself asked explicitly for a
transfer (read/modify event).
FTA orthogonal behaviors:

Responder: works as server that listen for incoming transfer
requests.
Asker: works as client that initiate the transfer protocol.

Asker Responder
Sender "I want send you a file" "Sure! I’ll send you a file"

Receiver "Can you send me that file?" "I’m ready to receive the file"

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Transfer overview

A FileTransferActor (FTA) is instantiated to handle a transfer
instance.
The FTA activity is transparent to the user (during normal load
balancing operation), unless the user itself asked explicitly for a
transfer (read/modify event).
FTA orthogonal behaviors:

Responder: works as server that listen for incoming transfer
requests.
Asker: works as client that initiate the transfer protocol.

Asker Responder
Sender "I want send you a file" "Sure! I’ll send you a file"

Receiver "Can you send me that file?" "I’m ready to receive the file"

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Transfer - FTA Initialization

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Transfer - Trasfer protocol

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

FTAs behavior

Load Balancing request: FTA in asker sender mode
Read/Modify request: FTA in asker receiver mode
Potential issues

Message stash and change behavior techniques to handle multiple
connections at the same time.
Potential bottleneck problem on the server when it is asked for
multiple transfers.

Modify protocol:
So fare we’ve seen the file transfer only; actually, when an user
click modify, other things happen, as we will see in the next slide.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

FTAs behavior

Load Balancing request: FTA in asker sender mode
Read/Modify request: FTA in asker receiver mode
Potential issues

Message stash and change behavior techniques to handle multiple
connections at the same time.
Potential bottleneck problem on the server when it is asked for
multiple transfers.

Modify protocol:
So fare we’ve seen the file transfer only; actually, when an user
click modify, other things happen, as we will see in the next slide.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

FTAs behavior

Load Balancing request: FTA in asker sender mode
Read/Modify request: FTA in asker receiver mode
Potential issues

Message stash and change behavior techniques to handle multiple
connections at the same time.
Potential bottleneck problem on the server when it is asked for
multiple transfers.

Modify protocol:
So fare we’ve seen the file transfer only; actually, when an user
click modify, other things happen, as we will see in the next slide.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

The Modify case

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

The modify case (the sender is myself)

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Rollback

During the transfer something bad (node crash, link failure) may
happen.
In that case rollback must be performed in order to guarantee a
consistent view of the system.
Receiver rollback obeys:

Deleting the file entry from the file table in the Server.
Deleting the file.
Restoring the free space.

Sender rollback obeys:
Releasing the lock on the file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Rollback

During the transfer something bad (node crash, link failure) may
happen.
In that case rollback must be performed in order to guarantee a
consistent view of the system.
Receiver rollback obeys:

Deleting the file entry from the file table in the Server.
Deleting the file.
Restoring the free space.

Sender rollback obeys:
Releasing the lock on the file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Rollback

During the transfer something bad (node crash, link failure) may
happen.
In that case rollback must be performed in order to guarantee a
consistent view of the system.
Receiver rollback obeys:

Deleting the file entry from the file table in the Server.
Deleting the file.
Restoring the free space.

Sender rollback obeys:
Releasing the lock on the file.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Import/Creation overview

File name uniqueness must be guaranteed at every time
The Cluster Listener Actor handles file creation in a safe way.
On reception of a creation request, the file name tag is potentially
reserved through a testAndSet mechanism

Creation and Import are handled mostly the same way
The difference is how the file is created.

Let’s see how the Creation works

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Import/Creation overview

File name uniqueness must be guaranteed at every time
The Cluster Listener Actor handles file creation in a safe way.
On reception of a creation request, the file name tag is potentially
reserved through a testAndSet mechanism

Creation and Import are handled mostly the same way
The difference is how the file is created.

Let’s see how the Creation works

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

File Import/Creation overview

File name uniqueness must be guaranteed at every time
The Cluster Listener Actor handles file creation in a safe way.
On reception of a creation request, the file name tag is potentially
reserved through a testAndSet mechanism

Creation and Import are handled mostly the same way
The difference is how the file is created.

Let’s see how the Creation works

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

The Creation case

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Application Logic and GUI overview

Problem: The GUI receives asynchronous updates from multiple
system actors. They must be handled concurrently.
Possible solutions:

Pass GUI object references to the actors in a thread safe way.
Follow Akka design methods and provide an Akka Actor also to
handle GUI.

With the latest solution some problem could anyway arise if the
GUI Actor is not in the same thread context used by the GUI
(explicit synchronization should be used).
Solution: Put the GUI Actor on the single thread dispatcher of
JavaFX, overriding the default Akka dispatcher for the GUI Actor.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Application Logic and GUI overview

Problem: The GUI receives asynchronous updates from multiple
system actors. They must be handled concurrently.
Possible solutions:

Pass GUI object references to the actors in a thread safe way.
Follow Akka design methods and provide an Akka Actor also to
handle GUI.

With the latest solution some problem could anyway arise if the
GUI Actor is not in the same thread context used by the GUI
(explicit synchronization should be used).
Solution: Put the GUI Actor on the single thread dispatcher of
JavaFX, overriding the default Akka dispatcher for the GUI Actor.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Application Logic and GUI overview

Problem: The GUI receives asynchronous updates from multiple
system actors. They must be handled concurrently.
Possible solutions:

Pass GUI object references to the actors in a thread safe way.
Follow Akka design methods and provide an Akka Actor also to
handle GUI.

With the latest solution some problem could anyway arise if the
GUI Actor is not in the same thread context used by the GUI
(explicit synchronization should be used).
Solution: Put the GUI Actor on the single thread dispatcher of
JavaFX, overriding the default Akka dispatcher for the GUI Actor.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Application Logic and GUI overview

Problem: The GUI receives asynchronous updates from multiple
system actors. They must be handled concurrently.
Possible solutions:

Pass GUI object references to the actors in a thread safe way.
Follow Akka design methods and provide an Akka Actor also to
handle GUI.

With the latest solution some problem could anyway arise if the
GUI Actor is not in the same thread context used by the GUI
(explicit synchronization should be used).
Solution: Put the GUI Actor on the single thread dispatcher of
JavaFX, overriding the default Akka dispatcher for the GUI Actor.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

JavaFX and AKKA dispatchers

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

SoulReaper Actor

Shutting down an actor system must be done in a precise way, in
order to let all the task to terminate properly.
The SoulReaper Actor implements a shutdown pattern

Every actor in the system is watched by the SoulReaper, that
keeps track of all the live actors.
If an actor dies (even commit suicide or it is killed by others) the
SoulReaper Actor "collects his soul".
If all the souls are reaped, the SoulReaper terminates the entire
actor system closing the application.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

SoulReaper Actor

Shutting down an actor system must be done in a precise way, in
order to let all the task to terminate properly.
The SoulReaper Actor implements a shutdown pattern

Every actor in the system is watched by the SoulReaper, that
keeps track of all the live actors.
If an actor dies (even commit suicide or it is killed by others) the
SoulReaper Actor "collects his soul".
If all the souls are reaped, the SoulReaper terminates the entire
actor system closing the application.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

SoulReaper Actor

Shutting down an actor system must be done in a precise way, in
order to let all the task to terminate properly.
The SoulReaper Actor implements a shutdown pattern

Every actor in the system is watched by the SoulReaper, that
keeps track of all the live actors.
If an actor dies (even commit suicide or it is killed by others) the
SoulReaper Actor "collects his soul".
If all the souls are reaped, the SoulReaper terminates the entire
actor system closing the application.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

SoulReaper Actor

Shutting down an actor system must be done in a precise way, in
order to let all the task to terminate properly.
The SoulReaper Actor implements a shutdown pattern

Every actor in the system is watched by the SoulReaper, that
keeps track of all the live actors.
If an actor dies (even commit suicide or it is killed by others) the
SoulReaper Actor "collects his soul".
If all the souls are reaped, the SoulReaper terminates the entire
actor system closing the application.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

SoulReaper Actor

Shutting down an actor system must be done in a precise way, in
order to let all the task to terminate properly.
The SoulReaper Actor implements a shutdown pattern

Every actor in the system is watched by the SoulReaper, that
keeps track of all the live actors.
If an actor dies (even commit suicide or it is killed by others) the
SoulReaper Actor "collects his soul".
If all the souls are reaped, the SoulReaper terminates the entire
actor system closing the application.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

Shutdown procedure

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Node Crash

Index

1 Requirements and assumptions
What the software must do
Requirements
Assumptions

2 Model
Working principles
Actor scheme

3 Implementation
File Transfer
File Import/Creation
Application Logic and GUI
Actor system shutdown

4 Robustness handling
Node Crash

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Node Crash

Filename tag renewal in case of responsible node crash
This case the node that owns the file is responsible for the filename
tag renewal.
The other tags are supposed to be lost in case of a large crash.
This is an acceptable behavior, since the tags regarding a file are
spread all over the cluster, not on a single node.

FileTable image is saved on disk
If a node crashes, the files owned are no more available.
However, serializing the FileTable on disk, their state can be
reloaded into the application once the application is restarted.
This solution doesn’t scale to disk failures.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing



Requirements and assumptions
Model

Implementation
Robustness handling

Node Crash

Filename tag renewal in case of responsible node crash
This case the node that owns the file is responsible for the filename
tag renewal.
The other tags are supposed to be lost in case of a large crash.
This is an acceptable behavior, since the tags regarding a file are
spread all over the cluster, not on a single node.

FileTable image is saved on disk
If a node crashes, the files owned are no more available.
However, serializing the FileTable on disk, their state can be
reloaded into the application once the application is restarted.
This solution doesn’t scale to disk failures.

Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Akka FileSharing


	Requirements and assumptions
	What the software must do
	Requirements
	Assumptions

	Model
	Working principles
	Actor scheme

	Implementation
	File Transfer
	File Import/Creation
	Application Logic and GUI
	Actor system shutdown

	Robustness handling
	Node Crash


